It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Facial Emotion Recognition (FER) is a very challenging task due to the varying nature of facial expressions, occlusions, illumination, pose variations, cultural and gender differences, and many other aspects that cause a drastic degradation in quality of facial images. In this paper, an anti-aliased deep convolution network (AA-DCN) model has been developed and proposed to explore how anti-aliasing can increase and improve recognition fidelity of facial emotions. The AA-DCN model detects eight distinct emotions from image data. Furthermore, their features have been extracted using the proposed model and numerous classical deep learning algorithms. The proposed AA-DCN model has been applied to three different datasets to evaluate its performance: The Cohn-Kanade Extending (CK+) database has been utilized, achieving an ultimate accuracy of 99.26% in (5 min, 25 s), the Japanese female facial expressions (JAFFE) obtained 98% accuracy in (8 min, 13 s), and on one of the most challenging FER datasets; the Real-world Affective Face (RAF) dataset; reached 82%, in low training time (12 min, 2s). The experimental results demonstrate that the anti-aliased DCN model is significantly increasing emotion recognition while improving the aliasing artifacts caused by the down-sampling layers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Mansoura University, Department of Electronics and Communications Engineering, Faculty of Engineering, Mansoura, Egypt (GRID:grid.10251.37) (ISNI:0000 0001 0342 6662)
2 Zewail City of Science and Technology, School of Computational Sciences and Artificial Intelligence (CSAI), 6th of October City, Egypt (GRID:grid.440881.1) (ISNI:0000 0004 0576 5483)