Full Text

Turn on search term navigation

© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background:As the vaccination campaign against COVID-19 progresses, it becomes crucial to comprehend the lasting effects of vaccination on safeguarding against new infections or reinfections.

Objective:This study aimed to assess the risk of new SARS-CoV-2 infections based on the number of vaccine doses, prior infections, and other clinical characteristics.

Methods:We defined a cohort of 800 health care workers in a 24-month study (March 2020 to December 2022) in northern Barcelona to determine new infections by SARS-CoV-2. We used extended Cox models, specifically Andersen-Gill (AG) and Prentice-Williams-Peterson, and we examined the risk of new infections. The AG model incorporated variables such as sex, age, job title, number of chronic conditions, vaccine doses, and prior infections. Additionally, 2 Prentice-Williams-Peterson models were adjusted, one for those individuals with no or 1 infection and another for those with 2 or 3 infections, both with the same covariates as the AG model.

Results:The 800 participants (n=605, 75.6% women) received 1, 2, 3, and 4 doses of the vaccine. Compared to those who were unvaccinated, the number of vaccine doses significantly reduced (P<.001) the risk of infection by 66%, 81%, 89%, and 99%, respectively. Unit increase in the number of prior infections reduced the risk of infection by 75% (P<.001). When separating individuals by number of previous infections, risk was significantly reduced for those with no or 1 infection by 61% (P=.02), and by 88%, 93%, and 99% (P<.001) with 1, 2, 3, or 4 doses, respectively. In contrast, for those with 2 or 3 previous infections, the reduction was only significant with the fourth dose, at 98% (P<.001). The number of chronic diseases only increased the risk by 28%‐31% (P<.001) for individuals with 0‐1 previous infections.

Conclusions:The study suggests that both prior infections and vaccination status significantly contribute to SARS-CoV-2 immunity, supporting vaccine effectiveness in reducing risk of reinfection for up to 24 months after follow-up from the onset of the pandemic. These insights contribute to our understanding of long-term immunity dynamics and inform strategies for mitigating the impact of COVID-19.

Trial Registration:ClinicalTrials.gov NCT04885478; http://clinicaltrials.gov/ct2/show/NCT04885478

Details

Title
SARS-CoV-2 Infection Risk by Vaccine Doses and Prior Infections Over 24 Months: ProHEpiC-19 Longitudinal Study
Author
Torán-Monserrat, Pere  VIAFID ORCID Logo  ; Lamonja-Vicente, Noemí  VIAFID ORCID Logo  ; Costa-Garrido, Anna  VIAFID ORCID Logo  ; Carrasco-Ribelles, Lucía A  VIAFID ORCID Logo  ; Quirant, Bibiana  VIAFID ORCID Logo  ; Boigues, Marc  VIAFID ORCID Logo  ; Molina, Xaviera  VIAFID ORCID Logo  ; Chacón, Carla  VIAFID ORCID Logo  ; Dacosta-Aguayo, Rosalia  VIAFID ORCID Logo  ; Arméstar, Fernando  VIAFID ORCID Logo  ; Martínez Cáceres, Eva María  VIAFID ORCID Logo  ; Prado, Julia G  VIAFID ORCID Logo  ; Violán, Concepción  VIAFID ORCID Logo  ; ProHEpiC-19 study group16
First page
e56926
Section
COVID-19 Vaccination
Publication year
2024
Publication date
2024
Publisher
JMIR Publications
e-ISSN
23692960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132297863