Full text

Turn on search term navigation

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study demonstrates the significant advantages of integrating computational fluid dynamics (CFD) with artificial intelligence (AI)-based machine learning (ML) to optimize the pre-reforming process for reversible solid oxide cell (r-SOC) technologies. It places a distinct focus on the relationship between process variables, aiming to enhance the preparation of quality r-SOC-ready fuel, which is an indispensable element for successful operation. Evaluating the intricate thermochemistry of syngas-containing reforming processes involves employing an experimentally validated CFD model. The model serves as the foundation for gathering essential data, crucial for the development and training of AI-based machine learning models. The developed model forecasts and optimizes reforming processes across diverse fuel compositions, encompassing oxygen-containing syngas blends and controlled feedstock outlet process conditions. Impressively, the model’s predictions align closely with CFD outcomes with an error margin as low as 0.34%, underscoring its accuracy and reliability. This research significantly contributes to a deeper understanding and the qualitative enhancement of preparing high-quality syngas for SOC under improved process conditions. Enabling the early availability of valuable information drives forward sustainable research and ensures the safe, consistent operation assessment of r-SOC. Additionally, this strategic approach substantially reduces the need for resource-intensive experiments.

Details

Title
CFD and Artificial Intelligence-Based Machine Learning Synergy for the Assessment of Syngas-Utilizing Pre-Reformer in r-SOC Technology Advancement
Author
Peksen, Murphy M
First page
10181
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132840566
Copyright
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.