Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Epoxy resins exhibit outstanding curability, durability, and environmental compatibility, rendering them extensively utilized in the realm of engineering curing. Nevertheless, the current curing mechanism of epoxy-based resins in cohesion with sand remains inadequately elucidated, significantly impeding their applicability within the domain of soil curing. This study employed molecular dynamics simulations to investigate the adsorption behavior of three distinct types of epoxy resins on the sand surface: diglycidyl ether of bisphenol-A epoxy resin (DGEBA), diglycidyl ether 4,4′-dihydroxy diphenyl sulfone (DGEDDS), and aliphatic epoxidation of olefin resin (AEOR). The objective was to gain insights into the interactions between the sand surface and the epoxy resin polymers. The results demonstrated that DGEDDS formed a higher number of hydrogen bonds on the sand surface, leading to stronger intermolecular interactions compared to the other two resins. Furthermore, the mechanical properties of the adsorbed models of the three epoxy resins with sand were found to be relatively similar. This similarity can be attributed to their comparable chemical structures. Finally, analysis of the radius of gyration for the adsorbed epoxy resins revealed that AEOR exhibited a rigid structure due to strong molecular interactions, while DGEDDS displayed a flexible structure owing to weaker interactions.

Details

Title
Investigation of Adsorption and Young’s Modulus of Epoxy Resin–Sand Interfaces Using Molecular Dynamics Simulation
Author
Shen, Dejian 1 ; Pi, Xueran 1 ; Cai, Lili 2 ; Wang, Xin 1 ; Wu, Chunying 2 ; Liu, Ruixin 1 

 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China; [email protected] (X.P.); [email protected] (X.W.); [email protected] (R.L.) 
 Nanjing Ningtong Intelligent Transportation Technology Research Institute Co., Ltd., Nanjing 211135, China; [email protected] (L.C.); [email protected] (C.W.) 
First page
10383
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132848179
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.