Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

To explore the benefits of an overactuated vehicle at the limits of handling for autonomous driving. Development of a layered, modular, and computationally efficient control architecture for vehicles equipped with wheel-independent motors and axle-wise independent steering by separating the actuator allocation from the path tracking task.

Abstract

The motion control of vehicles poses distinct challenges for both vehicle stability and path tracking, especially under critical environmental and driving conditions. Overactuated vehicles can effectively utilize the available tyre–road friction potential by leveraging additional actuators, thus enhancing their stability and controllability even in challenging scenarios. This paper introduces a novel modular upstream control architecture for overactuated vehicles, integrating a fast and robust linear time-varying model predictive path and speed tracking controller with a model following approach and nonlinear control allocation to form a holistic vehicle motion controller. The architecture decouples the path and speed tracking task from the actuator allocation, where torque vectoring and rear-wheel steering are applied to achieve linear understeer reference vehicle behavior. It allows for the use of a simpler path tracking controller, enabling long preview horizons and enhanced computational efficiency. Nonlinearities, such as the mutual influence of lateral and longitudinal tyre forces, are accounted for within the control allocation. The simulation results demonstrate that the proposed control architecture and overactuation improve vehicle stability in critical driving conditions and reduce path tracking errors compared to a dual-motor vehicle.

Details

Title
Vehicle Motion Control for Overactuated Vehicles to Enhance Controllability and Path Tracking
Author
Mandl, Philipp  VIAFID ORCID Logo  ; Edelmann, Johannes; Plöchl, Manfred
First page
10718
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132855521
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.