Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a novel design method for a magnetorheological (MR) damper-based semi-active suspension system. An improved MR damper model that accurately describes the hysteretic nature and effect of the applied current is presented. Given the unfeasibility of installing sensors for all vehicle states, an MR damper current controller that only considers the suspension deflection and deflection rate is proposed. A linear matrix inequality problem is formulated to design the current controller, with the objective of enhancing ride safety and comfort while guaranteeing vehicle stability and robustness against any road disturbance. A series of experiments demonstrates the enhanced performance of the proposed MR damper model, which exhibits greater accuracy than other state-of-the-art damper models, such as Bingham or bi-viscous. An evaluation of the vehicle behavior under two simulated road scenarios has been conducted to demonstrate the performance of the proposed output feedback MR damper-based semi-active suspension system.

Details

Title
Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers
Author
Viadero-Monasterio, Fernando  VIAFID ORCID Logo  ; Meléndez-Useros, Miguel  VIAFID ORCID Logo  ; Jiménez-Salas, Manuel  VIAFID ORCID Logo  ; Beatriz López Boada  VIAFID ORCID Logo 
First page
10336
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132855533
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.