Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study proposes a system for analyzing non-face-to-face counseling data using text-mining techniques to assess psychological states and automatically classify them into predefined categories. The system addresses the challenge of understanding internal issues that may be difficult to express in traditional face-to-face counseling. To solve this problem, a counseling management system based on text mining was developed. In the experiment, we combined TF-IDF and Word Embedding techniques to process and classify client counseling data into five major categories: school, friends, personality, appearance, and family. The classification performance achieved high accuracy and F1-Score, demonstrating the system’s effectiveness in understanding and categorizing clients’ emotions and psychological states. This system offers a structured approach to analyzing counseling data, providing counselors with a foundation for recommending personalized counseling treatments. The findings of this study suggest that in-depth analysis and classification of counseling data can enhance the quality of counseling, even in non-face-to-face environments, offering more efficient and tailored solutions.

Details

Title
Text-Mining-Based Non-Face-to-Face Counseling Data Classification and Management System
Author
Park, Woncheol  VIAFID ORCID Logo  ; Oh, Seungmin  VIAFID ORCID Logo  ; Park, Seonghyun
First page
10747
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132856668
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.