Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor. Results: Depending on the localization of the phototoxic protein, different effects on membrane microviscosity were observed. With nuclear localization of KillerRed, a gradual decrease in microviscosity was detected throughout the entire observation period, while for membrane localization of KillerRed, a dramatic increase in microviscosity was observed in the first minutes after PDT, and then a significant decrease at later stages of monitoring. The obtained data on cell monolayers are in good agreement with the data obtained for 3D tumor spheroids. Conclusions: These results indicate the involvement of membrane microviscosity in the response of tumor cells to PDT, which strongly depends on the localization of reactive oxygen species attack via targeting of a genetically encoded photosensitizer.

Details

Title
Unraveling Microviscosity Changes Induced in Cancer Cells by Photodynamic Therapy with Targeted Genetically Encoded Photosensitizer
Author
Shimolina, Liubov E 1 ; Khlynova, Aleksandra E 1 ; Elagin, Vadim V 1 ; Bureev, Pavel A 1 ; Sherin, Petr S 2   VIAFID ORCID Logo  ; Kuimova, Marina K 2   VIAFID ORCID Logo  ; Shirmanova, Marina V 1 

 Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; [email protected] (L.E.S.); [email protected] (A.E.K.); [email protected] (V.V.E.); [email protected] (P.A.B.) 
 Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK; [email protected] (P.S.S.); [email protected] (M.K.K.) 
First page
2550
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132935455
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.