Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, we report highly crosslinked hybrid aerogels with an organic backbone based on vinylmethyldimethoxysilane (VMDMS) with tuneable properties. For an improved and highly reproducible synthesis, a prepolymer based on 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (D4V4) and VMDMS as monomers was prepared and purified. Di-tert-butylperoxide (DTBP) concentrations of 1 mol% initiate the radical polymerization of the mentioned monomers to achieve high yields of polymers. After purification, the obtained viscous polyorganosilane precursor could be reproducibly crosslinked with dimethyldimethoxysilane (DMDMS) or methyltrimethoxysilane (MTMS) to form gels in benzylic alcohol (BzOH), water (H2O) and tetramethylammonium hydroxide (TMAOH). Whereas freeze-drying these silica-based hybrid aerogels led to high thermal conductivity (>20 mW m−1K−1) and very fragile materials, useful aerogels were obtained via solvent exchange and supercritical drying with CO2. The DMDMS-based aerogels exhibit enhanced compressibility (31% at 7 kPa) and low thermal conductivity (16.5 mW m−1K−1) with densities around (0.111 g cm−3). The use of MTMS results in aerogels with lower compressibility (21% at 7 kPa) and higher density (0.124 g cm−3) but excellent insulating properties (14.8 mW m−1K−1).

Details

Title
Reproducible Superinsulation Materials: Organosilica-Based Hybrid Aerogels with Flexibility Control
Author
Geyer, Marvin 1   VIAFID ORCID Logo  ; Leven, Felix 2   VIAFID ORCID Logo  ; Limberg, Johannes 2 ; Andronescu, Corina 3 ; Ostermann, Rainer 2   VIAFID ORCID Logo 

 Technische & Makromolekulare Chemie, Westfälische Hochschule, 45665 Recklinghausen, Germany; [email protected] (F.L.); [email protected] (J.L.); Chemical Technology III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany; [email protected] 
 Technische & Makromolekulare Chemie, Westfälische Hochschule, 45665 Recklinghausen, Germany; [email protected] (F.L.); [email protected] (J.L.) 
 Chemical Technology III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany; [email protected] 
First page
692
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23102861
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3132999546
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.