Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of this paper was to investigate the transcriptomic and metabolomic differences in Populus cathayana × canadasis ‘Xinlin1’ (P. cathayana × canadasis ‘Xinlin 1’) under varying irrigation and fertilization conditions. Ten-year-old P. cathayana × canadasis ‘Xinlin 1’ was selected as the test subject in this study; different irrigation and fertilization treatments were set up, and DEGs and DAMs in response to water and fertilizer regulation were identified. Transcriptomic and metabolomic profiles were analyzed from both leaves and roots. A total of 22,870 DEGs were identified in response to water and fertilizer treatments, predominantly belonging to 48 transcription factor families, including MYB, ERF, and MYB-related ones. Additionally, 2432 DAMs were detected and categorized into 18 metabolite classes, with flavonoids being the most abundant (342 metabolites), followed by terpenoids, lipids, and others. KEGG enrichment analysis revealed that DEGs and DAMs were significantly associated with pathways such as plant hormone signal transduction and starch and sucrose metabolism pathways. The levels of ABA exhibited an initial decrease followed by an increase, with several key genes, including PYR/PYL, PP2C, SnRK2, and ABF, also differentially expressed in the plant hormone signal transduction pathway. In the starch and sucrose metabolic pathways, sucrose was more hydrolyzed into D-fructose, which gradually translocated from roots to leaves. DEGs were significantly involved in sucrose synthesis and decomposition into D-fructose and 1,3-β-glucose, as well as starch synthesis and starch decomposition into cellulose dextrin, which underwent complete hydrolysis to glucose. In the starch hydrolysis process, 29 DEGs were involved, with 12 down-regulated and 17 up-regulated.

Details

Title
Molecular Mechanisms of Poplar Adaptation to Water–Fertilizer Coupling: Insights from Transcriptomic and Metabolomic Analyses
Author
Shen, Jiajia 1 ; Li, Xiao 2 ; Jiang, Luping 2 ; Wang, Hongxing 2 ; Pang, Zhongyi 3 ; Peng, Yanhui 3 ; Zhang, Xinxin 2 ; Zhao, Xiyang 2   VIAFID ORCID Logo 

 College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun 130118, China 
 College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China 
 State-Owned Xinmin City Machinery Forest Farm, Shenyang 110300, China 
First page
1967
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133006749
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.