Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

General face recognition is currently one of the key technologies in the field of computer vision, and it has achieved tremendous success with the support of deep-learning technology. General face recognition models currently exhibit extremely high accuracy on some high-quality face datasets. However, their performance decreases in challenging environments, such as low-light scenes. To enhance the performance of face recognition models in low-light scenarios, we propose a face recognition approach based on feature decoupling and fusion (DeFFace). Our main idea is to extract facial-related features from images that are not influenced by illumination. First, we introduce a feature decoupling network (D-Net) to decouple the image into facial-related features and illumination-related features. By incorporating the illumination triplet loss optimized with unpaired identity IDs, we regulate illumination-related features to minimize the impact of lighting conditions on the face recognition system. However, the decoupled features are relatively coarse. Therefore, we introduce a feature fusion network (F-Net) to further extract the residual facial-related features from the illumination-related features and fuse them with the initial facial-related features. Finally, we introduce a lighting-facial correlation loss to reduce the correlation between the two decoupled features in the specific space. We demonstrate the effectiveness of our method on four real-world low-light datasets and three simulated low-light datasets. We retrain multiple general face recognition methods using our proposed low-light training sets to further validate the advanced performance of our method. Compared to general face recognition methods, our approach achieves an average improvement of more than 2.11 percentage points on low-light face datasets. In comparison with image enhancement-based solutions, our method shows an average improvement of around 16 percentage points on low-light datasets, and it also delivers an average improvement of approximately 5.67 percentage points when compared to illumination normalization-based methods.

Details

Title
DeFFace: Deep Face Recognition Unlocked by Illumination Attributes
Author
Zhou, Xiangling; Gao, Zhongmin; Gong, Huanji; Li, Shenglin
First page
4566
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133015135
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.