Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present review is related to the novel approach for improvement of the optical properties of wide bandgap metal oxides, in particular TiO2, based on the formation of the inorganic–organic hybrids that display absorption in the visible spectral range due to the formation of interfacial charge transfer (ICT) complexes. We outlined the property requirements of TiO2-based ICT complexes for efficient photo-induced catalytic reactions, emphasizing the simplicity of the synthetic procedure, the possibility of the fine-tuning of the optical properties supported by the density functional theory (DFT) calculations, and the formation of a covalent linkage between the inorganic and organic components of hybrids, i.e., the nature of the interface. In addition, this study provides a comprehensive insight into the potential applications of TiO2-based ICT complexes in photo-driven catalytic reactions (water splitting and degradation of organic molecules), including the identification of the reactive species that participate in photocatalytic reactions by the spin-trapping electron paramagnetic resonance (EPR) technique. Considering the practically limitless number of combinations between the inorganic and organic components capable of forming oxide-based ICT complexes and with the knowledge that this research area is unexplored, we are confident it is worth studying, and we emphasized some further perspectives.

Details

Title
Photocatalytic Reactions over TiO2-Based Interfacial Charge Transfer Complexes
Author
Lazić, Vesna  VIAFID ORCID Logo  ; Nedeljković, Jovan M
First page
810
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133024825
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.