Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, the recent achievements in the application of solid oxides fuel cells (SOFCs) are discussed. This paper summarizes the progress in two major topics: the materials for the electrolytes, anode, and cathode, and the fuels used, such as hydrocarbon, alcohol, and solid carbon fuels. Various aspects related to the development of new materials for the main components of the materials for electrocatalysts and for solid electrolytes (e.g., pure metals, metal alloys, high entropy oxides, cermets, perovskite oxides, Ruddlesden–Popper phase materials, scandia-stabilized-zirconia, perovskite oxides, and ceria-based solid electrolytes) are reported in a coherent and explanatory way. The selection of appropriate material for electrocatalysts and for solid electrolyte is crucial to achieve successful commercialization of the SOFC technology, since enhanced efficiency and increased life span is desirable. Based on the recent advancements, tests were conducted in a biogas-fueled Ni-YSZ/YSZ/GDC/LSC commercial cell, to elucidate the suitability of the LSC as an anode. Results obtained encourage the application of LSC as an anode in actual SOFC and SOFEC systems. Thus, H2-SOFC demonstrated a satisfying ASR value, while, for biogas-assisted electrolysis, the current values slightly increased compared to the methane-SOFEC, and for a 50/50 biogas mixture of methane and carbon dioxide, the corresponding value presented the higher increase.

Details

Title
Recent Progress on the Materials of Oxygen Ion-Conducting Solid Oxide Fuel Cells and Experimental Analysis of Biogas-Assisted Electrolysis over a LSC Anode
Author
Drosakis, Christos 1   VIAFID ORCID Logo  ; Douvartzides, Savvas 1 ; Athanasiou, Costas 2   VIAFID ORCID Logo  ; Skodras, Georgios 1 

 Department of Mechanical Engineering, School of Engineering, University of Western Macedonia, 50100 Kozani, Greece; [email protected] (C.D.); [email protected] (S.D.) 
 Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece; [email protected] 
First page
5526
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133039512
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.