Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the deepening of the Industrial Revolution and the rapid development of the chemical industry, the large-scale emissions of corrosive dust and gases from numerous factories have become a significant source of air pollution. Mercury in the atmosphere, identified by the United Nations Environment Programme (UNEP) as one of the globally concerning air pollutants, has been proven to pose a threat to the human environment with potential carcinogenic risks. Therefore, accurately predicting atmospheric mercury concentration is of critical importance. This study proposes a novel advanced model—the Trans-BiGRU-QA hybrid—designed to predict the atmospheric mercury concentration accurately. Methodology includes feature engineering techniques to extract relevant features and applies a sliding window technique for time series data preprocessing. Furthermore, the proposed Trans-BiGRU-QA model is compared to other deep learning models, such as GRU, LSTM, RNN, Transformer, BiGRU, and Trans-BiGRU. This study utilizes air quality data from Vietnam to train and test the models, evaluating their performance in predicting atmospheric mercury concentration. The results show that the Trans-BiGRU-QA model performed exceptionally well in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2), demonstrating high accuracy and robustness. Compared to other deep learning models, the Trans-BiGRU-QA model exhibited significant advantages, indicating its broad potential for application in environmental pollution prediction.

Details

Title
Advanced Trans-BiGRU-QA Fusion Model for Atmospheric Mercury Prediction
Author
Dong-Her Shih 1   VIAFID ORCID Logo  ; Feng-I, Chung 2   VIAFID ORCID Logo  ; Ting-Wei, Wu 1 ; Bo-Hao, Wang 1 ; Ming-Hung, Shih 3 

 Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan; [email protected] (D.-H.S.); [email protected] (B.-H.W.) 
 Center for General Education, National Chung Cheng University, Chiayi 621301, Taiwan; [email protected] 
 Department of Electrical and Computer Engineering, Iowa State University, 2520 Osborn Drive, Ames, IA 50011, USA; [email protected] 
First page
3547
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133318116
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.