Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to growing water demands and changing hydro-meteorological variables brought on by climate change, drought is becoming an increasingly serious climate concern. The Al-Baha region of Saudi Arabia is the subject of this study because it is susceptible to both agricultural and meteorological droughts. This study investigates how climate change affects patterns of drought in Al-Baha by analyzing four drought indices (Agricultural Standardized Precipitation Index (aSPI), the Standardized Precipitation Index (SPI), the Rainfall Deficiency Index (RDI), and the Effective Reconnaissance Drought Index (eRDI)) for the years 1991–2022. Analysis of rainfall data was carried out to classify drought events according to their duration, frequency, and severity. Results showed that severe droughts occurred in 2009, 2010, 2012, 2016, and 2022, with 2010 being the worst year. Results also indicated a notable decrease in precipitation, which has resulted in extended dry spells. Several indices indicate that this tendency has significant ramifications for agriculture, particularly in areas where farming is a major economic activity. In addition, the possible occurrence of hydrological drought was also observed based on the negative values for the Reservoir Storage Index (RSI) in Al-Baha. Projections for the future under two Representative Concentration Pathways (RCPs) showed notable variations in temperature and precipitation. Both the RCP4.5 (low emission) and the RCP8.5 (high emission) projection scenarios indicate that drought conditions will likely worsen further. Depending on the emission scenario, it is projected to show a temperature increase of 1–2 °C, whereas the variability in precipitation projections indicates significant uncertainty, with a reduction change in the range of 1.2–27% between 2050 and 2100. The findings highlight the urgent need for proactive adaptation strategies, effective water resource management, and the development of sophisticated drought prediction tools. Addressing these challenges is crucial for sustaining agriculture and managing water scarcity in Saudi Arabia in the face of increasing drought risk.

Details

Title
Assessing Drought Patterns in Al-Baha: Implications for Water Resources and Climate Adaptation
Author
Ibrahim, Hesham M 1   VIAFID ORCID Logo  ; Alghamdi, Abdulaziz G 2   VIAFID ORCID Logo  ; Aly, Anwar A 3   VIAFID ORCID Logo 

 Department of Soil Sciences, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; [email protected]; Department of Soils and Water, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt 
 Department of Soil Sciences, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; [email protected] 
 Soil and Water Science Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; [email protected] 
First page
9882
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133367953
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.