Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Under the combined influences of climate and vegetation change, land–atmosphere interactions have enhanced, and precipitation recycling is an important part of this. Previous studies of the precipitation recycling process have focused on calculating the precipitation recycling rate (PRR) and analyzing the influencing factors. However, the climate-driven and vegetation-induced precipitation recycling process variations were not quantified. This study has systematically examined the precipitation recycling process in a typical arid region using the Eltahir and Bras model, random forest algorithm, and partial least-squares structural equation modeling. During 1982–2018, the leaf area index (LAI) and evapotranspiration (ET) rate both increased significantly, with growth rates of 0.06 m2m−2/decade and 13.99 mm/decade, respectively. At the same time, the average PRR in Xinjiang was 13.92% and experienced significant growth at a rate of 1.28%/decade. The climate-driven and vegetation-induced PRR variations were quantified, which contributed 79.12% and 20.88%, respectively. In addition, the positive effects of both of these on PRR variations through ET did not increase with the increase in ET, but rather decreased sharply and then stabilized. This study can provide favorable theoretical support for mitigating the contradiction in water use and balancing economic development and ecological security by quantifying the regulation of precipitation by vegetation.

Details

Title
Vegetation Greening Promoted the Precipitation Recycling Process in Xinjiang
Author
Li, Xuewei 1 ; Hao, Xingming 2   VIAFID ORCID Logo  ; Zhang, Sen 1 ; Hou, Guanyu 3 ; Zhang, Jingjing 1 ; Fan, Xue 1 ; Zhao, Zhuoyi 4 

 State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; [email protected] (X.L.); [email protected] (X.F.); Aksu National Oasis Agroecosystem Observation and Research Station, Aksu 843017, China; University of Chinese Academy of Sciences, Beijing 100049, China 
 State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; [email protected] (X.L.); [email protected] (X.F.); Aksu National Oasis Agroecosystem Observation and Research Station, Aksu 843017, China 
 State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; [email protected] (X.L.); [email protected] (X.F.); University of Chinese Academy of Sciences, Beijing 100049, China 
 International Institute of Earth System Science, Nanjing University, Nanjing 210023, China 
First page
4156
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133385725
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.