Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The 2015 Tianjin Port chemical explosion highlighted the severe environmental and structural impacts of industrial disasters. This study presents an Adaptive Weighted Coherence Ratio technique, a novel approach for assessing such damage using synthetic aperture radar (SAR) data. Our method overcomes limitations in traditional techniques by incorporating temporal and spatial weighting factors—such as distance from the explosion epicenter, pre- and post-event intervals, and coherence quality—into a robust framework for precise damage classification. This approach effectively captures extreme damage scenarios, including crater formation in inner blast zones, which are challenging for conventional coherence scaling. Through a detailed analysis of the Tianjin explosion, we reveal asymmetric damage patterns influenced by high-rise buildings and demonstrate the method’s applicability to other industrial disasters, such as the 2020 Beirut explosion. Additionally, we introduce a technique for estimating crater dimensions from coherence profiles, enhancing assessment in severely damaged areas. To support structural analysis, we model air pollutant dispersal using HYSPLIT simulations. This integrated approach advances SAR-based damage assessment techniques, providing rapid reliable classifications applicable to various industrial explosions, aiding disaster response and recovery planning.

Details

Title
Adaptive Weighted Coherence Ratio Approach for Industrial Explosion Damage Mapping: Application to the 2015 Tianjin Port Incident
Author
Su, Zhe 1 ; Fan, Chun 2 

 National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China 
 School of Energy Resources, China University of Geosciences, Beijing 100083, China; [email protected] 
First page
4241
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133387969
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.