Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alzheimer’s disease (AD) involves a complex pathophysiology with multiple interconnected subpathologies, including protein aggregation, impaired neurotransmission, oxidative stress, and microglia-mediated neuroinflammation. Current treatments, which generally target a single subpathology, have failed to modify the disease’s progression, providing only temporary symptom relief. Multi-target drugs (MTDs) address several subpathologies, including impaired aggregation of pathological proteins. In this review, we cover hybrid molecules published between 2014 and 2024. We offer an overview of the strategies employed in drug design and approaches that have led to notable improvements and reduced hepatotoxicity. Our aim is to offer insights into the potential development of new Alzheimer’s disease drugs. This overview highlights the potential of multi-target drugs featuring heterocycles with N-benzylpiperidine fragments and natural compounds in improving Alzheimer’s disease treatment.

Details

Title
New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer’s Disease Treatment
Author
Angelova, Violina T 1   VIAFID ORCID Logo  ; Stoyanov, Boris P 2   VIAFID ORCID Logo  ; Simeonova, Rumyana 2   VIAFID ORCID Logo 

 Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria 
 Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; [email protected] 
First page
5314
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133394018
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.