Full text

Turn on search term navigation

© 2024 Sanz-Martín et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increasing availability of massive genetic sequencing data in the clinical setting has triggered the need for appropriate tools to help fully exploit the wealth of information these data possess. GFPrint™ is a proprietary streaming algorithm designed to meet that need. By extracting the most relevant functional features, GFPrint™ transforms high-dimensional, noisy genetic sequencing data into an embedded representation, allowing unsupervised models to create data clusters that can be re-mapped to the original clinical information. Ultimately, this allows the identification of genes and pathways relevant to disease onset and progression. GFPrint™ has been tested and validated using two cancer genomic datasets publicly available. Analysis of the TCGA dataset has identified panels of genes whose mutations appear to negatively influence survival in non-metastatic colorectal cancer (15 genes), epidermoid non-small cell lung cancer (167 genes) and pheochromocytoma (313 genes) patients. Likewise, analysis of the Broad Institute dataset has identified 75 genes involved in pathways related to extracellular matrix reorganization whose mutations appear to dictate a worse prognosis for breast cancer patients. GFPrint™ is accessible through a secure web portal and can be used in any therapeutic area where the genetic profile of patients influences disease evolution.

Details

Title
GFPrint™: A machine learning tool for transforming genetic data into clinical insights
Author
Sanz-Martín, Guillermo; Daniela Paula Migliore; Pablo Gómez del Campo; José del Castillo-Izquierdo; Domínguez, Juan Manuel
First page
e0311370
Section
Research Article
Publication year
2024
Publication date
Nov 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3133644861
Copyright
© 2024 Sanz-Martín et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.