It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Klebsiella pneumoniae is a prominent opportunistic pathogen associated with multidrug resistance (MDR) and high morbidity and mortality rates in healthcare settings. The emergence of strains resistant to last-resort antibiotics, such as colistin and carbapenems, poses significant therapeutic challenges. This study presents the complete genome analysis of the MDR strain K. pneumoniae BCSIR-JUMIID to elucidate its genetic architecture, resistance mechanisms, and virulence factors. The genome of K. pneumoniae BCSIR-JUMIID, isolated from a pharmaceutical wastewater in Dhaka, Bangladesh, was sequenced using next-generation sequencing technologies. Bioinformatics tools were employed for genome assembly, annotation, and functional analysis. Phylogenetic relationships were established through whole-genome comparisons. Antibiotic resistance genes, virulence factors, and mobile genetic elements were identified using the Comprehensive Antibiotic Resistance Database (CARD), ResFinder-4.5.0, Virulence Factors Database (VFDB), and various phage identification tools. The genome of K. pneumoniae BCSIR-JUMIID consists of 5,769,218 bp with a G+C content of 56.79%, assembled into 343 contigs. A total of 6,062 coding sequences (CDS), including 1,087 hypothetical proteins, 49 tRNA genes, and 4 rRNA genes, were identified. Key loci involved in capsular polysaccharide and O-antigen biosynthesis (KL150, KL107-D1, O3b) were detected. A diverse array of antibiotic resistance genes was uncovered, including those conferring resistance to beta-lactams, quinolones, and colistin. Phage analysis revealed the presence of multiple dsDNA bacteriophages, and CRISPR-Cas systems indicated robust phage defense mechanisms. The genomic analysis of K. pneumoniae BCSIR-JUMIID provides a detailed understanding of its resistance and virulence mechanisms, highlighting its potential for horizontal gene transfer and rapid adaptation. These findings underscore the necessity for continued surveillance and novel therapeutic strategies to combat MDR K. pneumoniae infections effectively.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer