It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The patch-clamp technique allows us to eavesdrop the gating behavior of individual ion channels with unprecedented temporal resolution. The signals arise from conformational changes of the channel protein as it makes rapid transitions between conducting and non-conducting states. However, unambiguous analysis of single-channel datasets is challenging given the inadvertently low signal-to-noise ratio as well as signal distortions caused by low-pass filtering. Ion channel kinetics are typically described using hidden Markov models (HMM), which allow conclusions on the inner workings of the protein. In this study, we present a Deep Learning approach for extracting models from single-channel recordings. Two-dimensional dwell-time histograms are computed from the idealized time series and are subsequently analyzed by two neural networks, that have been trained on simulated datasets, to determine the topology and the transition rates of the HMM. We show that this method is robust regarding noise and gating events beyond the corner frequency of the low-pass filter. In addition, we propose a method to evaluate the goodness of a predicted model by re-simulating the prediction. Finally, we tested the algorithm with data recorded on a patch-clamp setup. In principle, it meets the requirements for model extraction during an ongoing recording session in real-time.
The patch-clamp technique enables probing of the gating behavior of individual ion channel proteins, but unambiguous analysis of single-channel datasets is challenging. Here, the authors present a deep learning approach for extracting Markov models from single-channel recordings.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Physiologie und Pathophysiologie, Erlangen, Germany (GRID:grid.5330.5) (ISNI:0000 0001 2107 3311)
2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen National High Performance Computing Center, Erlangen, Germany (GRID:grid.5330.5) (ISNI:0000 0001 2107 3311)
3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Pattern Recognition Lab, Erlangen, Germany (GRID:grid.5330.5) (ISNI:0000 0001 2107 3311)