It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Phylodynamic methods provide a coherent framework for the inference of population parameters directly from genetic data. They are an important tool for understanding both the spread of epidemics as well as long-term macroevolutionary trends in speciation and extinction. In particular, phylodynamic methods based on multi-type birth-death models have been used to infer the evolution of discrete traits, the movement of individuals or pathogens between geographic locations or host types, and the transition of infected individuals between disease stages. In these models, population heterogeneity is treated by assigning individuals to different discrete types. Typically, methods which allow inference of parameters under multi-type birth-death models integrate over the possible birth-death trajectories (i.e. the type-specific population size functions) to reduce the computational demands of the inference. As a result, it has not been possible to use these methods to directly infer the dynamics of trait-specific population sizes, infected host counts or other such demographic quantities. In this paper we present a method which infers these multi-type trajectories with almost no additional computational cost beyond that of existing methods. We demonstrate the practicality of our approach by applying it to a previously-published set of MERS-CoV genomes, inferring the numbers of human and camel cases through time, together with the number and timing of spillovers from the camel reservoir. This application highlights the multi-type population trajectory's ability to elucidate properties of the population which are not directly ancestral to its sampled members.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer