It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The ability of surface polaritons (SPs) to enhance and manipulate light fields down to deep-subwavelength length scales enables applications in optical sensing and nonlinear optics at the nanoscale. However, the wavelength mismatch between light and SPs prevents direct optical excitation of surface-bound modes, thereby limiting the widespread development of SP-based photonics. Free electrons are a natural choice to directly excite strongly confined SPs because they can supply field components of high momentum at designated positions with subnanometer precision. Here, we theoretically explore free-electron–SP coupling mediated by small scatterers and show that low-energy electrons can efficiently excite surface modes with a maximum probability reached at an optimum surface–scatterer distance. By aligning the electron beam with a periodic array of scatterers placed near a polariton-supporting interface, in-plane Smith–Purcell emission results in the excitation of surface modes along well-defined directions. Our results support using scattering elements to excite SPs with low-energy electrons.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
2 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Castelldefels, Barcelona, Spain