It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this work, negative-capacitance (NC) and local surface plasmon resonance (LSPR) coupled MoS2 phototransistors with a gate stack of HZO/AuNPs/Al2O3/MoS2 are fabricated, and the impacts of Al2O3 interlayer-thickness (TAlO) on the LSPR effect, the tensile strain on MoS2 from the Au nanoparticles (AuNPs), the capacitance matching of the NC effect from Hf0.5Zr0.5O2 (HZO) ferroelectric layer and the optoelectrical properties of the relevant devices are investigated. Through optimizing TAlO, excellent optoelectrical properties of phototransistors with a TAlO of 3 nm are achieved: a subthreshold swing (SS) of 25.76 mV/dec and ultrahigh detectivity of over 1014 Jones under 740 nm illumination. This is primarily because the NC-LSPR coupled structure can achieve an ultra-low SS through capacitance matching and a good interface passivation through optimizing Al2O3 interlayer to maintain effective LSPR and strain effects cross the MoS2 to enhance optical absorption and detection range. This work provides a comprehensive analysis on effective distance range of the non-direct-contacted LSPR effect and its combination with capacitance matching of NC effect, culminating in an optimized NC-LSPR coupled MoS2 phototransistor with a good consistency across an array of 30 devices, and offering a viable solution for the preparation of large-area, high-performance and broad-spectrum response 2D phototransistor array.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Integrated Circuits, 12443Huazhong University of Science and Technology, Wuhan 430074, China
2 Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China