It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Sugars and organic acids, primary components in plant root exudates, are thought to enhance microbial decomposition of organic matter in the rhizosphere. However, their specific impacts on microbial activity and nutrient mobilisation remain poorly understood. Here, we simulated passive root exudation to investigate the distinct effects of sugars and organic acids on microbial metabolism in the rhizosphere. We released 13C-labelled sugars and/or organic acids via reverse microdialysis into intact meadow and forest soils over 6-hours. We measured substrate-induced microbial respiration, soil organic matter mineralization, metabolite concentrations, and substrate incorporation into lipid-derived fatty acids. Our results reveal a pronounced microbial preference for organic acids over sugars, with organic acids being removed faster from the exudation spot and preferentially respired by microbes. Unlike sugars, organic acids increased concentrations of microbial metabolic byproducts and cations (K, Ca, Mg) near the exudation spot. Our results challenge the prevailing assumption that sugars are the most readily available and rapidly consumed substrates for soil microbes. Microbial preference for organic acids indicates a trade-off between rapid biomass growth and ATP yield. Our findings underscore the significant role of exudate composition in influencing microbial dynamics and nutrient availability, and emphasize the importance of biotic and abiotic feedback mechanisms in the rhizosphere in regulating root exudation.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
* https://doi.org/10.5281/zenodo.13338424
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer