Full text

Turn on search term navigation

© 2024 Chang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Neural mechanisms and underlying directionality of signaling among brain regions depend on neural dynamics spanning multiple spatiotemporal scales of population activity. Despite recent advances in multimodal measurements of brain activity, there is no broadly accepted multiscale dynamical models for the collective activity represented in neural signals. Here we introduce a neurobiological-driven deep learning model, termed multiscale neural dynamics neural ordinary differential equation (msDyNODE), to describe multiscale brain communications governing cognition and behavior. We demonstrate that msDyNODE successfully captures multiscale activity using both simulations and electrophysiological experiments. The msDyNODE-derived causal interactions between recording locations and scales not only aligned well with the abstraction of the hierarchical neuroanatomy of the mammalian central nervous system but also exhibited behavioral dependences. This work offers a new approach for mechanistic multiscale studies of neural processes.

Details

Title
Multiscale effective connectivity analysis of brain activity using neural ordinary differential equations
Author
Yin-Jui Chang; Yuan-I, Chen; Stealey, Hannah M  VIAFID ORCID Logo  ; Zhao, Yi; Hung-Yun, Lu; Contreras-Hernandez, Enrique; Baker, Megan N; Castillo, Edward  VIAFID ORCID Logo  ; Yeh, Hsin-Chih; Santacruz, Samantha R  VIAFID ORCID Logo 
First page
e0314268
Section
Research Article
Publication year
2024
Publication date
Dec 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3141014985
Copyright
© 2024 Chang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.