Abstract

Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The puff adder (Bitis arietans) and saw-scaled viper (Echis romani) have cytotoxic venoms that cause permanent injury via tissue-destructive dermonecrosis around the bite site. Identification of cytotoxic toxins within these venoms will allow development of targeted treatments, such as small molecule inhibitors or monoclonal antibodies to prevent snakebite morbidity. Venoms from both species were fractionated using gel filtration chromatography, and a combination of cell-based cytotoxicity approaches, SDS-PAGE gel electrophoresis, and enzymatic assays were applied to identify venom cytotoxins in the resulting fractions. Our results indicated that snake venom metalloproteinase (SVMP) toxins are predominately responsible for causing cytotoxic effects across both venoms, but that the PII subclass of SVMPs are likely the main driver of cytotoxicity following envenoming by B. arietans, whilst the structurally distinct PIII subclass of SVMPs are responsible for conveying this effect in E. romani venom. Identification of distinct SVMPs as the primary cytotoxicity-causing toxins in these two African viper venoms will facilitate the future design and development of novel therapeutics targeting these medically important venoms, which in turn could help to mitigate the severe life and limb threatening consequences of tropical snakebite.

Competing Interest Statement

The authors have declared no competing interest.

Details

Title
Snake venom metalloproteinases are predominantly responsible for the cytotoxic effects of certain African viper venoms
Author
Bartlett, Keirah E; Westhorpe, Adam; Wilkinson, Mark C; Casewell, Nicholas R
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2024
Publication date
Dec 7, 2024
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
3141973715
Copyright
© 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.