It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cluster analysis of HIV sequence can provide insights into viral transmission patterns in border regions. This study aims to illuminate the HIV-1 subtype distribution and transmission dynamics among newly diagnosed individuals in Dehong prefecture, a region along the China-Myanmar border. Among 948 participants with pol gene sequences, 36 HIV-1 subtypes were identified, with URFs (18.8%, 178/948) being the dominant strain, followed by CRF01_AE (18.5%, 175/948) and CRF07_BC (10.9%, 103/948). Additionally, 287 sequences (30.3%, 287/948) were grouped into 91 clusters, 31 of which contained both Chinese and Burmese individuals. Multivariable logistic regression indicated that men who have sex with men (MSM), CD4 + cell count of 200∼499, and 500 cells/μl and above, and CRF01_AE were risk factors for entering the network. Through the Chord diagram, we found frequent transmission relationships among heterosexual China male group, especially those over 35 years of age. Additionally, the correlation between heterosexual Myanmar female group and heterosexual China male group among cross-risk groups deserved to be emphasized. Furthermore, the network exhibited a growing trend over time, with the largest active transmission cluster identified in Ruili county. In conclusion, the HIV-1 subtype landscape in Dehong has become increasingly complex, and the region has faced risks of transmission from both domestic and international sources. Targeted intervention strategies should be implemented for MSM, heterosexual Chinese middle-aged and elderly men, and heterosexual Burmese young adults to mitigate these risks. These findings provided evidence-based insights for local government to formulate coordinated transnational intervention approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China; National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
2 Department of STD/AIDS Prevention and Control, Dehong Prefecture Center for Disease Control and Prevention, Mangshi, People’s Republic of China
3 National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China