It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Objective
This study aimed to develop and validate a predictive model for assessing the efficacy of neoadjuvant chemotherapy (NACT) in nasopharyngeal carcinoma (NPC) by integrating radiomics and pathomics features using a particle swarm optimization-supported support vector machine (PSO-SVM).
Methods
A retrospective multi-center study was conducted, which included 389 NPC patients who received NACT from three institutions. Radiomics features were extracted from magnetic resonance imaging scans, while pathomics features were derived from histopathological images. A total of 2,667 radiomics features and 254 pathomics features were initially extracted. Feature selection involved intra-class correlation coefficient evaluation, Mann-Whitney U test, Spearman correlation analysis, and least absolute shrinkage and selection operator regression. The PSO-SVM model was constructed and validated using 10-fold cross-validation on the training set and further evaluated using an external validation set. Model performance was assessed using the area under the curve (AUC) of the receiver operating characteristic curve, calibration curves, and decision curve analysis.
Results
Eight significant predictive features (five radiomics and three pathomics) were identified. The PSO-SVM radiopathomics model achieved superior performance compared to models based solely on radiomics or pathomics features. The AUCs for the PSO-SVM radiopathomics model were 0.917 (95% CI: 0.887–0.948) in internal validation and 0.814 (95% CI: 0.742–0.887) in external validation. Calibration curves demonstrated good agreement between predicted probabilities and actual outcomes. Decision curve analysis showed that the PSO-SVM radiopathomics model provided higher clinical net benefit over a wider range of risk thresholds compared to other models.
Conclusion
The PSO-SVM radiopathomics model effectively integrates radiomics and pathomics features, offering enhanced predictive accuracy and clinical utility for assessing NACT efficacy in NPC. The multi-center approach and robust validation underscore its potential for personalized treatment planning, supporting improved clinical decision-making for NPC patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer