Abstract

Many integrable theories can be formulated universally in terms of Lie algebraic root systems. Well-studied are conformally invariant scalar field theories of Toda type and their massive versions, which can be expressed in terms of simple roots of finite Lie and affine Kac-Moody algebras, respectively. Also, multi-particle systems of Calogero-Moser-Sutherland type, which require the entire root system in their formulation, are extensively studied. Here, we discuss recently proposed extensions of these models to similar systems based on hyperbolic and Lorentzian Kac-Moody algebras. We explore various properties of these models, including their integrability and their invariance with respect to infinite Weyl groups of affine, hyperbolic, and Lorentzian types.

Details

Title
Toda field theories and Calogero models associated to infinite Weyl groups
Author
Fring, Andreas
First page
012021
Publication year
2024
Publication date
Dec 2024
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3142960571
Copyright
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.