It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recognition of ship traffic patterns can provide insights into the rules of navigation, maneuvering, and collision avoidance for ships at sea. This is essential for ensuring safe navigation at sea and improving navigational efficiency. With the popularization of the Automatic Identification System (AIS), numerous studies utilized ship trajectories to identify maritime traffic patterns. However, the current research focuses on the spatiotemporal behavioral feature clustering of ship trajectory points or segments while lacking consideration for multiple factors that influence ship behavior, such as ship static and maritime geospatial features, resulting in insufficient precision in ship traffic pattern recognition. This study proposes a ship traffic pattern recognition method that considers multi-attribute trajectory similarity (STPMTS), which considers ship static feature, dynamic feature, port geospatial feature, as well as semantic relationships between these features. First, A ship trajectory reconstruction method based on grid compression was introduced to eliminate redundant data and enhance the efficiency of trajectory similarity measurements. Subsequently, to quantify the degree of similarity of ship trajectories, a trajectory similarity measurement method is proposed that combines ship static and dynamic information with port geospatial features. Furthermore, trajectory clustering with hierarchical methods was applied based on the trajectory similarity matrix for dividing trajectories into different clusters. The quality of the similarity measurement results was evaluated by quality criterion to recognize the optimal number of ship traffic patterns. Finally, the effectiveness of the proposed method was verified using actual port ship trajectory data from the Tianjin Port of China, ranging from September to November 2016. Compared with other methods, the proposed method exhibits significant advantages in identifying traffic patterns of ships entering and leaving the port in terms of geometric features, dynamic features, and adherence to navigation rules. This study could serve as an inspiration for a comprehensive exploration of maritime transportation knowledge from multiple perspectives.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Maritime Intelligent Transportation Research Team, Navigation College, Dalian Maritime University, Dalian, China
2 College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
3 Department of Automation, School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Maritime Intelligent Transportation Research Team, Navigation College, Dalian Maritime University, Dalian, China