It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Chinese satellite carrying synthetic aperture radar (SAR) with spatial resolution up to 1 m, denoted as 1mC-SAR, is the successor of Gaofen-3 (GF-3). The main purpose of this study is to conduct the preliminary analysis of wind and wave retrieval from more than 400 1mC-SAR images acquired in quad-polarization stripmap (QPS), which are located at China coastal waters on April 2023. The co-polarized (vertical−vertical [VV] and horizontal−horizontal [HH]) geophysical model function (GMF), denoted as CSARMOD-GF, is employed for wind speed retrieval from those images taking prior information on wind directions from European Centre for Medium-Range Weather Forecasts (ECMWF). Validation against the wind products from Haiyang-2 (HY-2) (2B/2C/2D) scatterometers yields a 1.78/1.91 m/s root mean squared error (RMSE) with a 0.22/0.23 scatter index (SI) for SAR retrievals at VV/HH polarization channels. Moreover, the accuracy of SAR-derived winds at spatial resolution of 2 km for QPS-I and 6 km for QPS-II is relatively higher than that achieved from the retrievals at spatial resolution of 4 km for QPS-I and 12 km. The wave slop spectrum is inverted from co-polarized image by polarimetric technique, in which the term of wind speed is included in the model transfer function (MTF) of tilt modulation. Significant wave height (SWH) retrievals are compared with the simulations by the third-generation numeric wave model, denoted as WAVEWATCH-III (WW3), showing a 0.53 m RMSE with a 0.36 SI. This behavior is also confirmed as comparing with SAR-derived wave spectra and WW3-simulated wave spectra, i.e. a 0.79 correlation coefficient (Cor) and a 0.92 squared error (Err). The variation of bias in wind speed and SWH indicates an increasing tendency with the growth of sea state, meaning that calibration is a heedful issue for 1mC-SAR.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
2 Natural Sciences, University of Stirling, Stirling, UK
3 National Satellite Ocean Application Service, Ministry of Natural Resources of the People’s Republic of China, Beijing, China