It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions. The model incorporates the unique characteristics of GD RBCs, such as decreased deformability and increased aggregation properties, and aims to capture the resulting changes in RBC biophysics and blood viscosity. This study is the first to explore the Young's modulus and aggregation parameters of GD RBCs by validating simulations with confocal imaging and experimental RBC disaggregation thresholds. Through in silico simulations, we examine the impact of hematocrit, RBC disaggregation threshold, and cell stiffness on blood viscosity in GD. The results reveal three distinct domains of GD blood viscosity based on shear rate: the aggregation domain, where the RBC disaggregation threshold predominantly influences blood viscosity; the transition area, where both RBC aggregation and stiffness impact on blood viscosity; and the stiffness domain, where the stiffness of RBCs emerges as the primary determinant of blood viscosity. By quantitatively assessing RBC deformability, RBC disaggregation threshold, and blood viscosity in relation to bone disease, we find that the RBC aggregation properties, as well as their deformability and blood viscosity, may contribute to its onset. These findings enhance our understanding of how changes in RBC properties impact on blood viscosity and may affect bone health, offering a partial explanation for the bone complications observed in GD patients.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer