Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

The force/torque control, considering the incurved shape of the TMS coil shape, improved the adherence between the coil and the subject’s head. It also enhanced the accuracy of the coil.

Abstract

This paper proposes the force/torque control strategy for the robotized transcranial magnetic stimulation (TMS) system, considering the shape of the TMS coil case. Hybrid position/force control is used to compensate for the error between the current and target position of the coil and to maintain the contact between the coil and the subject’s head. The desired force magnitude of the force control part of the hybrid controller is scheduled by the error between the current and target position of the TMS coil for fast error reduction and the comfort of the subject. Additionally, the torque proportional to the torque acting on the coil’s center is generated to stabilize the contact. Compliance control, which makes the robot adaptive to the environment, stabilizes the coil and head interaction during force/torque control. The experimental results showed that the force controller made the coil generate a relatively large force for a short time (less than 10 s) for the fast error reduction, and a relatively small interaction force was maintained for the contact. They showed that the torque controller made the contact area inside the coil. The experiment also showed that the proposed strategy could be used for tracking a new target point estimated by the neuronavigation system when the head moved slightly.

Details

Title
Manipulator Control of the Robotized TMS System with Incurved TMS Coil Case
Author
Kim, Jaewoo 1   VIAFID ORCID Logo  ; Yang, Gi-Hun 1   VIAFID ORCID Logo 

 Industrial Technology (Robotics), University of Science and Technology, Daejeon 34113, Republic of Korea; [email protected]; Human-Centric Robotics R&D Department, Korea Insitute of Industrial Technology, Ansan 15588, Republic of Korea 
First page
11441
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3143949317
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.