Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In active-matrix organic light-emitting diode (AMOLED) displays, conventional pixel circuits that compensate for the non-uniformity of the threshold voltage (VT) of low-temperature polycrystalline silicon thin-film transistors (TFTs) can hardly compensate for variations in other TFT parameters, such as carrier mobility (μ0), subthreshold swing (SS) and the various effects of parasitic capacitance. In recent high-resolution AMOLED displays, as the current required for OLED pixel driving decreases, the current error rate (CER) caused by the non-uniform TFT parameters increases. In this study, we analyzed the influence of each TFT parameter on the CER using SPICE simulation. Based on our analysis, the origin of the increased CER can be classified into two categories: the charging capability of driving TFT and the capacitive coupling effect of the switching TFT. The SS of the driving TFT and the parasitic capacitance of the switching TFT are major factors that affect the CER in terms of the charging capability and capacitive coupling effect, respectively. Our analysis results can be summarized as follows: The SS value of the driving TFT should be high, and its variation should be small to minimize the CER. The variation in the parasitic capacitance of the switching TFT possibly occurs due to long-term bias conditions, as well as process non-uniformity. Therefore, the stability of TFT should also be confirmed for the prevention of anomalous CER caused by long-term bias stress.

Details

Title
A Study of Device Parameters Affecting the Current Error Rate in a Low-Temperature Polycrystalline Silicon Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diode Display Applications
Author
Moon, Kook Chul 1   VIAFID ORCID Logo  ; Jae-Hong, Jeon 2   VIAFID ORCID Logo  ; Park, KeeChan 3   VIAFID ORCID Logo 

 College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; [email protected] 
 School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea 
 School of Electrical and Electronics Engineering, Konkuk University, Seoul 05029, Republic of Korea 
First page
4810
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144086140
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.