Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-quality short-term forecasts of wind farm generation are crucial for the dynamically developing renewable energy generation sector. This article addresses the selection of appropriate gradient-boosted decision tree models (GBDT) for forecasting wind farm energy generation with a 10-min time horizon. In most forecasting studies, authors utilize a single gradient-boosted decision tree model and compare its performance with other machine learning (ML) techniques and sometimes with a naive baseline model. This paper proposes a comprehensive comparison of all gradient-boosted decision tree models (GBDTs, eXtreme Gradient Boosting (XGBoost), Light Gradient-Boosting Machine (LightGBM), and Categorical Boosting (CatBoost)) used for forecasting. The objective is to evaluate each model in terms of forecasting accuracy for wind farm energy generation (forecasting error) and computational time during model training. Computational time is a critical factor due to the necessity of testing numerous models with varying hyperparameters to identify the optimal settings that minimize forecasting error. Forecast quality using default hyperparameters is used here as a reference. The research also seeks to determine the most effective sets of input variables for the predictive models. The article concludes with findings and recommendations regarding the preferred GBDT models. Among the four tested models, the oldest GBDT model demonstrated a significantly longer training time, which should be considered a major drawback of this implementation of gradient-boosted decision trees. In terms of model quality testing, the lowest nRMSE error was achieved by the oldest model—GBDT in its tuned version (with the best hyperparameter values obtained from exploring 40,000 combinations).

Details

Title
Short-Term Energy Generation Forecasts at a Wind Farm—A Multi-Variant Comparison of the Effectiveness and Performance of Various Gradient-Boosted Decision Tree Models
Author
Kopyt, Marcin; Piotrowski, Paweł  VIAFID ORCID Logo  ; Baczyński, Dariusz  VIAFID ORCID Logo 
First page
6194
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144114507
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.