Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

During roadway excavation, the presence of roof deterioration zones, such as layered spaces and weak interlayers, significantly affects the stability of the surrounding rock. To achieve timely and effective support for roadways, it is essential to utilize drilling measurement signals obtained during the construction of anchorage holes for the identification and prediction of these deterioration zones. This study systematically investigates the response characteristics of thrust, torque, and Y-direction vibration signals to different combinations of rock layers through theoretical analysis, laboratory experiments, ABAQUS dynamic numerical simulations, and field measurements. The results indicate that these drilling parameters effectively characterize variations in rock structure and strength, with distinct signal features observed particularly in roof deterioration zones. Based on these findings, this paper proposes a deep learning algorithm that employs Long Short-Term Memory (LSTM) recurrent neural networks for classification prediction, along with a random forest algorithm for regression prediction, aimed at the intelligent identification and prediction of roof deterioration zones. The algorithm demonstrates outstanding performance in both laboratory experiments and field tests, achieving a 100% recognition rate for layered spaces and a 96.6% accuracy for identifying deterioration zones, with high accuracy at lower values of mechanical specific energy (MSE). The proposed method provides significant insights for real-time monitoring and control of roof deterioration zones, enhancing the safety and stability of roadway excavations, and serves as a valuable reference for future research and practical applications.

Details

Title
Intelligent Identification and Prediction of Roof Deterioration Areas Based on Measurements While Drilling
Author
Wu, Jing; Zhao, Zhi-Qiang; Xiao-He, Wang  VIAFID ORCID Logo  ; Yi-Qing, Wang; Xiao-Xiang, Wei; Zhi-Qiang You
First page
7421
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144169494
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.