Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

(1) Background: Human detection and tracking are critical tasks for assistive autonomous robots, particularly in ensuring safe and efficient human–robot interaction in indoor environments. The increasing need for personal assistance among the elderly and people with disabilities has led to the development of innovative robotic systems. (2) Methods: This research presents a lightweight two-layer control architecture for a human-following robot, integrating a fuzzy behavior-based control system with low-level embedded controllers. The system uses an RGB-D sensor to capture distance and angular data, processed by a fuzzy controller to generate speed set-points for the robot’s motors. The low-level control layer was developed using pole placement and internal model control (IMC) methods. (3) Results: Experimental validation demonstrated that the proposed architecture enables the robot to follow a person in real time, maintaining the predefined following distance of 1.3 m in each of the five conducted trials. The IMC-based controller demonstrated superior performance compared to the pole placement controller across all evaluated metrics. (4) Conclusions: The proposed control architecture effectively addresses the challenges of human-following in indoor environments, offering a robust, real-time solution suitable for assistive robotics with limited computational resources. The system’s modularity and scalability make it a promising approach for future developments in personal assistance robotics.

Details

Title
Lightweight Two-Layer Control Architecture for Human-Following Robot
Author
Acosta-Amaya, Gustavo A 1   VIAFID ORCID Logo  ; Miranda-Montoya, Deimer A 2   VIAFID ORCID Logo  ; Jimenez-Builes, Jovani A 2   VIAFID ORCID Logo 

 Instrumentation and Control Department, Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, Medellín 050022, Colombia; [email protected] 
 Department of Computer and Decision Sciences, Faculty of Mines, Universidad Nacional de Colombia, Medellín 050034, Colombia; [email protected] 
First page
7796
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144173777
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.