It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
When probed using fluorescence lifetime imaging microscopy (FLIM), the emission from reduced nicotinamide adenine dinucleotide (NADH) and its phosphorylated form NADPH have shown promise as sensitive intrinsic reporters of metabolism in living systems. However, an incomplete understanding of the biochemical processes controlling their fluorescence decay makes it difficult to draw unambiguous conclusions from NAD(P)H FLIM data. Here we utilised time-resolved fluorescence anisotropy imaging to identify multiple enzyme binding configurations in live cells associated with lifetimes both longer and shorter than unbound NAD(P)H. FLIM, combined with mathematical and computational modelling, revealed that the redox states of the NAD and NADP pools control the steady-state equilibrium of binding configurations, which in-turn determines the observed fluorescence decay. This knowledge will be foundational to developing the accurate interpretation of NAD(P)H FLIM.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer