It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The voltage-gated potassium channel Kv2.1 plays a role in the development of the ventricular system and the subcommissural organ in zebrafish. Here, a role for Kv2.1 in the secretion of the major component of Reissner's fiber, Scospondin, was demonstrated. The results showed that Kv2.1 acts as a negative regulator of Scospondin secretion and Reissner fiber assembly. Kv2.1 regulates formation of Scospondin microfilaments and their assembly in Reissner fiber. Cholesterol playing a key role in Scospondin secretion. After the Reissner fiber is formed, it is detached from the hindbrain floor plate, where Scospondin produced initially. The tension of the fiber depends on its attachment to the subcommissural and flexural organs. In turn fiber tension affects the morphogenesis of these organs. This process of Reissner fiber formation depends on the input provided by the Hedgehog and Wnt/β-catenin signaling pathways on the anterior roof and floor plates.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer