Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The pigment content of rice leaves plays an important role in the growth and development of rice. The accurate and rapid assessment of the pigment content of leaves is of great significance for monitoring the growth status of rice. This study used the Analytical Spectra Device (ASD) FieldSpec 4 spectrometer to measure the leaf reflectance spectra of 4 rice varieties during the entire growth period under 4 nitrogen application rates and simultaneously measured the leaf pigment content. The leaf’s absorption spectra were calculated based on the physical process of spectral transmission. An examination was conducted on the variations in pigment composition among distinct rice cultivars, alongside a thorough dissection of the interrelations and distinctions between leaf reflectance spectra and absorption spectra. Based on the vegetation index proposed by previous researchers in order to invert pigment content, the absorption spectrum was used to replace the original reflectance data to optimize the vegetation index. The results showed that the chlorophyll and carotenoid contents of different rice varieties showed regular changes during the whole growth period, and that the leaf absorption spectra of different rice varieties showed more obvious differences than reflectance spectra. After replacing the reflectance of pigment absorptivity-sensitive bands (400 nm, 550 nm, 680 nm, and red-edge bands) with absorptivities that would optimize the vegetation index, the correlation between the vegetation index, which combines absorptivity and reflectivity, and the chlorophyll and carotenoid contents of 4 rice varieties during the whole growth period was significantly improved. The model’s validation results indicate that the pigment inversion model, based on the improved vegetation index using absorption spectra, outperforms the traditional vegetation index-based pigment inversion model. The results of this study demonstrate the potential application of absorption spectroscopy in the quantitative inversion of crop phenotypes.

Details

Title
The Inversion of Rice Leaf Pigment Content: Using the Absorption Spectrum to Optimize the Vegetation Index
Author
Ma, Longfei; Li, Yuanjin; Yuan, Ningge; Liu, Xiaojuan; Yan, Yuyan; Zhang, Chaoran  VIAFID ORCID Logo  ; Fang, Shenghui; Gong, Yan
First page
2265
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149495498
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.