Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Consumer-grade economical radon monitors are becoming increasingly popular in private and institutional use, in the contexts of both Citizen Science and traditional research. Although originally designed for screening indoor radon levels in view of radon regulation and decisions about mitigation or remediation—motivated by the health hazard posed by high radon concentrations—researchers are increasingly exploring their potential in some environmental studies. For long time, radon has been used as a tracer for investigating atmospheric transport processes. This paper focuses on RadonEye, currently the most sensitive among low-cost monitors available on the market, and specifically, its potential use for monitoring very low radon concentrations. It has two objectives: firstly, discussing issues of statistics of low count rates, and secondly, analyzing radon concentration time series acquired with RadonEyes outdoors and in low-radon indoor spaces. Regarding the first objective, among other things, the inference radon concentration reported to expected true is discussed. The second objective includes the application of autoregressive methods and fractal statistics to time series analysis. The overall result is that radon dynamics can be well captured using this “low-tech” approach. Statistical results are plausible; however, few results are available in the literature for comparison, particularly concerning fractal methods. The paper may therefore be seen as an incentive for further research in this direction.

Details

Title
Analysis of Outdoor and Indoor Radon Concentration Time Series Recorded with RadonEye Monitors
Author
Bossew, Peter 1   VIAFID ORCID Logo  ; Benà, Eleonora 2 ; Chambers, Scott 3   VIAFID ORCID Logo  ; Janik, Miroslaw 4   VIAFID ORCID Logo 

 Graduate School of Health Sciences, Hirosaki University, Hirosaki 036-8224, Japan 
 Department of Geosciences, University of Padova, 35131 Padova, Italy; [email protected] 
 Environmental Research, ANSTO, Lucas Heights, Sydney 2234, Australia; [email protected] 
 Radiation Measurement Research Group, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan 
First page
1468
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149505024
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.