Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic–electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device’s performance. It also shows that both device structure and enzyme doping level of the devices play an important role in ensuring the best performance of the devices under various testing conditions.

Details

Title
All-Printed Microfluidic–Electrochemical Devices for Glucose Detection
Author
Wang, Zexi 1 ; Zhang, Zhiyi 2 ; Xu, Changqing 3 

 School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada 
 Quantum and Nanotechnologies Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada 
 Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada 
First page
569
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149521788
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.