Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper reports an experimental study on the effects of extreme temperature on human bronchial epithelial (HBE) cells encapsulated in 3D printed samples. Well plates of the 3D printed samples were exposed to three levels of temperature (37 °C, 45 °C, and 55 °C, respectively) for a duration of 10 min. Cells’ responses, specifically cell viability and oxidative stress, were quantified using Hoechst 33342, Sytox, and Mitosox stains, with intensity measurements obtained via a plate reader. In addition, cell viability was assessed through microscopic imaging of the 3D printed samples. Experimental results demonstrated that the temperature increase from 37 °C to 55 °C significantly reduced nuclear integrity as observed through Hoechst 33342 intensity, while increased Sytox intensity reflected a higher degree of cell death. Furthermore, cells exposed to 45 °C and 55 °C exhibited decreased cell viability and elevated mitochondrial oxidative stress. These findings offer valuable insights into the effects of extreme temperature on HBE cells, establishing a foundation for future research into how respiratory tissues respond to thermal stress. This research can potentially advance the knowledge regarding effects of heat exposure on the respiratory system.

Details

Title
Effects of Extreme Temperature on Human Bronchial Epithelial Cells in 3D Printed Samples
Author
Rahman, Taieba Tuba 1   VIAFID ORCID Logo  ; Wood, Nathan 2 ; Pei, Zhijian 1   VIAFID ORCID Logo  ; Qin, Hongmin 2   VIAFID ORCID Logo 

 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; [email protected] 
 Department of Biology, Texas A&M University, College Station, TX 77843, USA; [email protected] (N.W.); [email protected] (H.Q.) 
First page
1201
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149554490
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.