Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The global energy crisis is associated with the need to search for low-energy technical solutions. Such solutions are also introduced in the field of protection and restoration of surface waters. The aim of this work was to determine the efficiency of the AS15000 pulverizing aerator powered by solar energy. The innovative solutions of the aerator presented in this manuscript are subject to a patent application. A simulation was carried out taking into account the efficiency of the aerator pump and the sunlight conditions for the indicated location. The analysis was carried out for the location of an artificial reservoir—Zalew Średzki in Środa Wielkopolska (Poland). The simulation showed that during 6515 h of aerator operation, the pulverizing system pumped as much as 97,725 m3 of lake water. The amount of pure oxygen introduced into the water during the operation of the device can be as much as 1074.98 kg. The minimum daily value of sunlight enabling continuous operation of the device (24 h a day) with maximum efficiency is 1.43 kW/m2. Deoxygenated water in the pulverizing aeration process is taken from the bottom zone, transported to the surface and sprayed in the atmospheric air. Oxygenated water is intercepted and discharged to the bottom zone. Developing artificial aeration methods for lakes in combination with renewable energy sources is very important for improving water quality. The use of solar power allows the device to be used when it is far from the power infrastructure. This also allows the installation of aerators in the middle of the lake. In accordance with the Water Framework Directive, we should strive to improve the water quality of many European lakes as quickly as possible.

Details

Title
Performance Analysis of a Solar-Powered Pulverizing Aerator
Author
Osuch, Andrzej 1   VIAFID ORCID Logo  ; Osuch, Ewa 1   VIAFID ORCID Logo  ; Rybacki, Piotr 2   VIAFID ORCID Logo 

 Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-637 Poznan, Poland; [email protected] 
 Department of Agronomy, Faculty of Agronomy, Horticulture and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; [email protected] 
First page
6321
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149622311
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.