Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In modern digital infrastructure, cyber systems are foundational, making resilience against sophisticated attacks essential. Traditional cybersecurity defenses primarily address technical vulnerabilities; however, the human element, particularly decision-making during cyber attacks, adds complexities that current behavioral studies fail to capture adequately. Existing approaches, including theoretical models, game theory, and simulators, rely on retrospective data and static scenarios. These methods often miss the real-time, context-specific nature of user responses during cyber threats. To address these limitations, this work introduces a framework that combines Extended Reality (XR) and Generative Artificial Intelligence (Gen-AI) within a gamified platform. This framework enables continuous, high-fidelity data collection on user behavior in dynamic attack scenarios. It includes three core modules: the Player Behavior Module (PBM), Gamification Module (GM), and Simulation Module (SM). Together, these modules create an immersive, responsive environment for studying user interactions. A case study in a simulated critical infrastructure environment demonstrates the framework’s effectiveness in capturing realistic user behaviors under cyber attack, with potential applications for improving response strategies and resilience across critical sectors. This work lays the foundation for adaptive cybersecurity training and user-centered development across critical infrastructure.

Details

Title
Understanding User Behavior for Enhancing Cybersecurity Training with Immersive Gamified Platforms
Author
Chandrashekar, Nikitha Donekal 1 ; Lee, Anthony 2   VIAFID ORCID Logo  ; Azab, Mohamed 3   VIAFID ORCID Logo  ; Gracanin, Denis 1   VIAFID ORCID Logo 

 Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA; [email protected] (N.D.C.); [email protected] (D.G.) 
 Department of Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA; [email protected] 
 Department of Computer and Information Sciences, Virginia Military Institute, Blacksburg, VA 24061, USA 
First page
814
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149643563
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.