Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Financial time series prediction is a fundamental problem in investment and risk management. Deep learning models, such as multilayer perceptrons, Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM), have been widely used in modeling time series data by incorporating historical information. Among them, LSTM has shown excellent performance in capturing long-term temporal dependencies in time-series data, owing to its enhanced internal memory mechanism. In spite of the success of these models, it is observed that in the presence of sharp changing points, these models fail to perform. To address this problem, we propose, in this article, an innovative financial time series prediction method inspired by the Deep Operator Network (DeepONet) architecture, which uses a combination of transformer architecture and a one-dimensional CNN network for processing feature-based information, followed by an LSTM based network for processing temporal information. It is therefore named the CNN–LSTM–Transformer (CLT) model. It not only incorporates external information to identify latent patterns within the financial data but also excels in capturing their temporal dynamics. The CLT model adapts to evolving market conditions by leveraging diverse deep-learning techniques. This dynamic adaptation of the CLT model plays a pivotal role in navigating abrupt changes in the financial markets. Furthermore, the CLT model improves the long-term prediction accuracy and stability compared with state-of-the-art existing deep learning models and also mitigates adverse effects of market volatility. The experimental results show the feasibility and superiority of the proposed CLT model in terms of prediction accuracy and robustness as compared to existing prediction models. Moreover, we posit that the innovation encapsulated in the proposed DeepONet-inspired CLT model also holds promise for applications beyond the confines of finance, such as remote sensing, data mining, natural language processing, and so on.

Details

Title
DeepONet-Inspired Architecture for Efficient Financial Time Series Prediction
Author
Ahmad, Zeeshan 1   VIAFID ORCID Logo  ; Bao, Shudi 2   VIAFID ORCID Logo  ; Chen, Meng 1 

 School of Cyber Science and Engineering, Ningbo University of Technology, Ningbo 315211, China; [email protected] (Z.A.); [email protected] (M.C.) 
 Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315201, China 
First page
3950
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149693764
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.