Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We have investigated the phase formation, microstructure, and permeability of stoichiometric and Fe-deficient Ni-Cu-Zn ferrites of composition Ni0.30Cu0.20Zn0.50+zFe2−zO4−(z/2) with 0 ≤ z ≤ 0.06 sintered at 1000 °C in various oxygen partial pressures pO2, which range from 0.21 atm down to 10−5 atm. The density of the sintered samples is almost independent of the pO2, whereas the grain size of the Fe-deficient ferrites decreases in more reducing atmospheres. Stoichiometric ferrites show a regular growth of single-phase ferrite grains if sintered in air. Sintering at pO2 ≤ 10−2 atm leads to the formation of a small amount of Cu2O at grain boundaries and triple points. Fe-deficient compositions (z > 0) form Cu-poor stoichiometric ferrites, which coexist with a minority CuO phase homogeneously distributed between the grains after sintering in air. At pO2 ≤ 10−2 atm, the CuO grain boundary phase starts to transform into Cu2O, which concentrates at some triple points at pO2 = 10−2 atm, and it is more homogeneously distributed between the ferrite grains at the lower pO2. Formation of the Cu oxide second phases is investigated using XRD, SEM, and EDX. The permeability at 1 MHz of the stoichiometric ferrites (z = 0) is between µ′ = 200 and µ′ = 300 within the studied range of the pO2. The permeability at 1 MHz of the Fe-deficient samples decreases with the pO2, e.g., from µ′ = 750 at pO2 = 0.21 atm to µ′ = 320 at pO2 = 10−5 atm for z = 0.02, respectively.

Details

Title
Phase Formation, Microstructure, and Permeability of Fe-Deficient Ni-Cu-Zn Ferrites (II): Effect of Oxygen Partial Pressure
Author
Priese, Christoph; Töpfer, Jörg  VIAFID ORCID Logo 
First page
97
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23127481
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149702700
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.