Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An intelligent approach is proposed and investigated in this paper for the detection of ultra-low-altitude sea-skimming moving targets for airborne pulse Doppler radar. Without suppressing interferences, the proposed method uses both target and multipath information for detection based on their distinguishable image features and deep learning (DL) techniques. First, the image features of the target, multipath, and sea clutter in the real-measured range-Doppler (RD) map are analyzed, based on which the target and multipath are defined together as the generalized target. Then, based on the composite electromagnetic scattering mechanism of the target and the ocean surface, a scattering-based echo generation model is established and validated to generate sufficient data for DL network training. Finally, the RD features of the generalized target are learned by training the DL-based target detector, such as you-only-look-once version 7 (YOLOv7) and Faster R-CNN. The detection results show the high performance of the proposed method on both simulated and real-measured data without suppressing interferences (e.g., clutter, jamming, and noise). In particular, even if the target is submerged in clutter, the target can still be detected by the proposed method based on the multipath feature.

Details

Title
Multipath and Deep Learning-Based Detection of Ultra-Low Moving Targets Above the Sea
Author
Wang, Zhaolong  VIAFID ORCID Logo  ; Zhang, Xiaokuan; Feng, Weike  VIAFID ORCID Logo  ; Zong, Binfeng; Wang, Tong; Cheng, Qi  VIAFID ORCID Logo  ; Chen, Xixi  VIAFID ORCID Logo 
First page
4773
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149750776
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.