Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Specific emitter identification (SEI) is a promising physical-layer authentication technique that serves as a crucial complement to upper-layer authentication mechanisms. SEI capitalizes on the inherent radio frequency fingerprints stemming from circuit discrepancies, which are intrinsic hardware properties and challenging to counterfeit. Recently, various deep learning (DL)-based SEI methods have been proposed, achieving outstanding performance. However, collecting and annotating substantial data for novel or unknown radiation sources is not only time-consuming but also cost-intensive. To address this issue, this paper proposes a few-shot (FS) metric learning-based time-frequency fusion network. To enhance the discriminative capability for radiation source signals, the model employs a convolutional block attention module (CBAM) and feature transformation to effectively fuse the raw signal’s time domain and time-frequency domain representations. Furthermore, to improve the extraction of discriminative features under FS scenarios, the proxy-anchor loss and center loss are introduced to reinforce intra-class compactness and inter-class separability. Experiments on the ADS-B and Wi-Fi datasets demonstrate that the proposed TFAF-Net consistently outperforms existing models in FS-SEI tasks. On the ADS-B dataset, TFAF-Net achieves a 9.59% higher accuracy in 30-way 1-shot classification compared to the second-best model, and reaches an accuracy of 85.02% in 10-way classification. On the Wi-Fi dataset, TFAF-Net attains 90.39% accuracy in 5-way 1-shot classification, outperforming the next best model by 6.28%, and shows a 13.18% improvement in 6-way classification.

Details

Title
Few-Shot Metric Learning with Time-Frequency Fusion for Specific Emitter Identification
Author
Mu, Shiyuan 1 ; Zu, Yong 2 ; Chen, Shuai 2 ; Yang, Shuyuan 2   VIAFID ORCID Logo  ; Feng, Zhixi 2   VIAFID ORCID Logo  ; Zhang, Junyi 3 

 School of Artificial Intelligence, Xidian University, Xi’an 710071, China; 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China 
 School of Artificial Intelligence, Xidian University, Xi’an 710071, China 
 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China 
First page
4635
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3149752037
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.